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The embedding potential for an interacting system 

A J Fisher 
Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK and Theoretical Physics 
Division, Hanvell Laboratory, Oxon OX11 ORA, UK 

Received 26 September 1988 

Abstract. It is already known that for a quantum system of independent boson or fermion 
quasiparticles, calculations can be performed explicitly in only one part if the remainder is 
replaced by an energy-dependent embedding potential. Using path-integral methods, we 
extend this result to the case when arbitrary many-body interactions are permitted in the 
region where explicit calculation is to take place, provided that certain averaging (such as is 
involved in taking thermal expectation values), is carried out over the configurations of the 
other region. This result can be used to calculate the electronic structure and equilibrium 
atomic positions around defect structures where many-body effects are important locally. It 
is not necessary to solve the problem of the remaining part of the crystal in the absence of 
the local region; it is sufficient to know the solution in the perfect crystal. We compare the 
embedding potential to Feynman’s ‘influence functional’ approach and use it to derive the 
well known scaling law for the Anderson model of a magnetic impurity. 

1. Introduction 

It is often desirable to perform a quantum-mechanical calculation on only one part of a 
solid. It might consist of a small region around a surface, grain boundary, line or point 
defect, or even of a single sublattice in the crystal structure. If the whole system may to 
an adequate approximation be regarded as consisting of non-interacting particles or 
quasi-particles moving in an external potential, it is known that the degrees of freedom 
in which one is not explicitly interested (here called ‘region 2 ’ ) ,  can be replaced by an 
energy- (or frequency-)dependent effective potential, known as the embeddingpotential, 
acting in that part of the Hilbert space (‘region l’), where we wish to calculate. This 
formalism contains exactly the same information as the Dyson equation for scattering 
of particles from a perturbation localised in region 1 and is equivalent in real space 
to imposing the requirement that the logarithmic derivative of the wavefunction be 
continuous across the boundary separating the two regions (Lowdin 1951, Baraff and 
Schluter 1986, Inglesfield 1981,1989, Fisher 1987,1988). 

In this paper we show that this result still holds in any calculation of ground-state or 
thermodynamic averages if the quasiparticles concerned, whether bosons or fermions, 
are allowed to interact with each other in region 1. (In the language of second quanti- 
zation, this means that the Hamiltonian is no longer a quadratic form in the creation and 
annihilation operators for states in region 1.) We do this by using second quantized 
versions of the path-integral methods first employed by Feyriman (1950, 1955), to 
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eliminate the photon and phonon fields to which electrons are coupled in quantum 
electrodynamics and in their motion through a polar crystal, respectively. 

It is obvious that a result of this type holds in any equation which expresses one 
single-particle Green function in terms of other single-particle Green functions or of a 
proper self-energy. This is because such a self-energy must be confined to region 1 where 
interactions between the quasiparticles are permitted. Once the self-energy has been 
calculated we can simply include it in the single-particle ‘optical potential’ for region 1 
and carry out exactly the same matrix manipulations as in the non-interacting case. The 
result of this paper is more general: in this language it tells us that we can also replace 
region 2 by the embedding potential when we calculate the self-energy itself. 

We first show how the equation of motion for afield operator within region 1 contains, 
beside the ‘embedding potential’ term familiar from the independent-particle theory, 
an extra term that describes the behaviour of region 2 when it is decoupled from region 
1. Such a term would be difficult to calculate for many of the systems described above; 
it would require, for example, finding the eigenvalues for a crystal in which the region 
around the defect of interest had been removed and replaced by empty space. However, 
this term has no effect on the equations of motion of Green functions for a system of 
independent particles; moreover we then show, by representing the matrix elements of 
the time evolution operator as a Feynman path integral, that this additional term in the 
equation of motion vanishes if we take a trace over all the fields in region 2. This 
corresponds to finding the total amplitude that one field configuration in region 1 
evolves into another after a certain time while leaving the fields in region 2 in the same 
(unspecified) state. Next we extend the analysis to an imaginary-time path integral; 
when the trace is taken over all fields in regions 1 and 2 this yields the partition function 
and hence the complete thermodynamic behaviour of the system including all region 1 
Green functions. Finally, we clarify the relationship of the embedding potential to the 
influence functional of Feynman, stressing the different sorts of averaging over the 
configurations of region 2 implied by the two methods, and use the embedding potential 
to give a rather simple picture of the scaling properties with band width of the Anderson 
model of a magnetic impurity. 

2. The equation of motion 

Suppose the system is defined by a set of single particle states Ii), which we assume 
are discrete and orthonormal. The corresponding boson (or fermion) creation and 
annihilation operators obey the (anti-)commutation relations 

f = +1 (bosons) or -1 (fermions). 

Divide the states / i )  into two sets, 1 and 2. From this point on we use the subscripts 
{i, j . . . n} to refer to states in set 1 and (p, q . . . }to refer to states in set 2. We suppose 
that the time-independent HamiltonianHcontains the operators of set 2 only in quadratic 
forms: 

where HI1 is an arbitrary polynomial in the annihilation and creation operators for states 
of set 1. 
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Consider the Heisenberg equation of motion for an annihilation operator in set 1 (in 
units where h = 1): 

i(d/at>aj(t> = [aj(t>, HI+ = [aj, ~ 1 1 ( t ) 1 +  + C tjpap(t)* (3) 
P 

Now the set 2 operators obey the coupled set of linear differential equations: 

We rewrite this in terms of the changes in the region 2 operators relative to their values 
a t t = O :  

a p  (4 = ap(t> - a p ( 0 )  ( 5 )  

ap(0)  = 0 (6) 

These new operators satisfy the homogeneous boundary condition 

and obey the following equations: 

The solution can be written as an integral over a (c-number) retarded matrix Green 
function which also satisfies a homogeneous boundary condition: 

GPq(t - t’) = 0 for t < t‘ (8) 
in the form: 

Comparing the solution which would be obtained if the subspaces 1 and 2 were 
decoupled, (i.e., if tqk = 0 for all k in 1, q in 2), we see that 

Up(t> = U j ( t )  + xq dt‘ GPq(t - t’) tqkUk(t’) (10) 
0 k 

where a:(t) is the decoupled solution with the same initial conditions as the actual 
solution: 

ap(0) = (11) 
The equation of motion for our original region 1 operator therefore becomes: 

i(a/at>a,(t> = [aj(t>, ~ 1 1 ( t ) 1 +  + jm dt’ tjpGpq(t - t’)tqkak(t’> + t,paj(t)* (12) 
Pqk 0 P 

The second term on the right-hand side is a retarded self-interaction which is second 
order in the coupling between regions 1 and 2 and which is the equivalent in the time 
domain of the energy-dependent embedding potential. It corresponds to a change in 
region 1 acting through region 2 and back onto region 1. The third term, however, is first 
order in the coupling and corresponds to the effect on region 1 of the decoupled behaviour 
of region 2. As explained above it may be difficult to calculate and it spoils what would 
otherwise be an expression that did not involve region 2 operators at all. 
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Its absence in the independent-particle derivations given previously is easily 
explained. Define, following Zubarev (1960), a single-particle Green function 

Observe that the third term in the equation of motion (12) for U, makes no contribution 
to the equation of motion of the Green function, since the operator a:(t) is merely a 
linear combination of the t = 0 annihilation operators in region 2. It therefore (anti-)- 
commutes with ak+ (0). However, this is not so in the equations of motion for n-particle 
Green functions (n  > 1). Therefore in a many-body problem, when such higher Green 
functions do not trivially reduce to products of single-particle Green functions, we might 
expect this undesirable third term to contribute. 

3. The path-integral representation of the evolution operator 

The motivation for the next step is as follows. We observe that the decoupled behaviour 
of region 2 responsible for the undesirable term in equation (12) is governed entirely by 
the initial conditions we choose to impose upon it at t = 0. In any particular rep- 
resentation, this will depend on the relative phase of the initial wavefunction in regions 
1 and 2. This is information in which we are not interested, because we normally consider 
a defect in thermal equilibrium and try to calculate ensemble averages; we therefore 
seek a way of taking an appropriate average over the initial conditions of region 2. The 
path integral formalism provides a convenient framework. 

We choose to work in the basis of coherent states which diagonalizes the annihilation 
operators. For boson annihilation operators the eigenvalues are complex numbers but 
for fermions they are anti-commuting Grassmann variables. (For further details of 
Grassmann variables and of the coherent state path integrals used in this section and the 
next see Negele and Orland 1988, whose notation we follow here.) The amplitude A, 
for the evolution of a field configuration 1 P,J (where these eigenvalues are qaL) at time t, 
into lqf) (where these eigenvalues are qaf) at time ff is given by the Feynman path 
integral: 

Af, = ( P , f  I exP[-i(tf - t,)H/P,,) 
M - 1  M - 1  

= M + m  lim 
M 

n (l/N)dp?:(fk)dy;a(tk)exp[- k = l  x q z ( t k ) Q ) a ( t k )  a 
a k = l  

+ k = l  2 (zq: a 
( t k ) q o ( t k - l ) )  - ieH(q?a* ( l k ) ,  p ? , ( t k - l ) ) ]  

where the functional integral is over all field configurations subject to the initial and final 
conditions qa(ti) = qai, qz (tf) = P, ,*~ ,  E = (tf - ti)/M, and N = 2ni (bosons) or N = 1 
(fermions). Here and subsequently, a sum or product over the subscript a implies 
inclusion of all fields in both regions 1 and 2. 
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We wish to carry out the functional integrations over the fields qa corresponding to 
boson (€ermion) operators in region 2 to obtain an effective functional of the fields in 
region 1 that can be integrated to obtain the matrix elements of the evolution operator 
between two states specified by their configurations in region 1. It is clear that with the 
present form of (14), such an effective functional will depend on the initial and final 
configurations qp(ti) and qp(tf) of the fields in region 2. The form of this dependence can 
be seen from studying the integral (14) in the stationary phase approximation; the 
dominant contributions then come from the paths q i ( t )  for which the exponent is 
stationary with respect to variations in the fields and which therefore obey the equations 
of motion: 

6S/dq,s,(t) = 0 6S/6q)* (t) = 0 (15) 

where S is the exponent in (14). However these equations are algebraically identical 
to the Heisenberg equations of motion for the creation and annihilation operators, 
respectively. For the region 2 operators that enter the exponent only quadratically, all 
the dependence on the end-points is contained in the contribution from the stationary 
paths (Feynman and Hibbs 1965), and is therefore just as given by the undesirable term 
in the Heisenberg equation of motion (9). 

We now take the trace of expression (14) over the fields in set 2. That is to say we ask 
for the total amplitude for evolution of some given field configuration within region 1 
into another between times ti and tf while leaving the fields in region 2 in their unspecified 
initial state (bosons) or with their phase altered by n (fermions). It is clear that in 
this way the dependence on the initial conditions in region 2 will be eliminated. It is 
convenient to define a Green function for region 2 which satisfies the equation: 

subject to the (anti-)periodic boundary conditions 

Gqr(t + tf - ti) = 5Gqr(t)* (17) 

Then we can write the contribution to the exponent in (14) which involves the region 2 
fields as: 

= i 1' d l z [ ( q p *  ( t )  - 1" dt'  Gir(t  - t')t;qT ( t ' )  
f ,  

ir 
t i  

>1 x (dPq ia/at - tpq) dt"  Gqs(t - t")tsiqj(t") 

- 2 I t *  dt'qT (t)t,G,,(t - t')tqiqj(t'). 
ij pq (, 
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The last term is the familiar embedding potential. In deriving (18) we have used (16) 
and the hermiticity of H to show that 

(a f4  ia/at - t p4 )  1" dt"  G,(t - t " ) tx jq j ( t " )  = 
4 1s t i  i 

tp jq , ( t )  (19) 

and integration by parts combined with the (anti-) periodic boundary conditions on the 
region 2 operators and the Green function to show that 

If we now make the change of variables in region 2 

2 irf dt"  G,,(t - t") ts jqi( t")  
J t ,  

then we can carry out the integration over the region 2 fields. It is a Gaussian integral 
whose value depends on whether the fields are bosonic or fermionic. The answer is 
irrelevant since it combines with the Jacobian of the transformation (21) to give an 
overall multiplicative factor in the evolution operator which is independent of the region 
1 Hamiltonian HI1. It therefore cancels when comparing the amplitudes for different 
processes within region 1. 

Therefore in order to find, within a multiplicative constant, a matrix element of the 
time development operator between two region 1 field configurations, it suffices to carry 
out a functional integration over the region 1 fields only with an effective Hamiltonian 

(22) 

This corresponds to adding to the region 1 Hamiltonian a single-particle time-dependent 
embedding potential whose matrix elements are 

M;j(t - t ' )  2 tif GP4(t - t ' ) t , .  
P9 

Note that because we imposed boundary conditions at two different times the effective 
potential or self-interaction we have derived for region 1 is neither wholly retarded nor 
wholly advanced. 

4. The partition function 

The partition function can be written as a path integral in imaginary time. It is then 
straightforward to apply the same techniques as above to show that the free energy of 
the system is given to within an additive constant by taking the path integral over just 
the region 1 degrees of freedom with an extra term similar to that in (22) added to the 
Hamiltonian. 
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Specifically, the partition function in the grand canonical ensemble is given by 

Z = tr exp[ -P(H - p N ) ]  

This time the functional integration is over all field configurations in regions 1 and 2 
which satisfy the boundary conditions qu(P)  = <qa(0).  Nis the number operator, p the 
chemical potential, P = l / ( k T )  and other symbols continue to carry the same meaning. 
We proceed as before, defining a region 2 Green function which is (anti-)periodic on the 
interval [0, PI: 

c. [ dpq (a /az  - cL> - lpqIGqr(T - z’> = 6,,@ - z’> 

Gq& + P> = CGqr(t) 

(25) 

(26) 

4 

and completing the square in the region 2 fields. On integrating out these fields the 
partition function becomes, to within a multiplicative constant which is independent of 
the Hamiltonian and the fields in region 1: 

(27) 
The multiplicative constant in the partition function will correspond to an additive 
constant in the total free energy. We can simplify the structure of the last term and 
increase its resemblance to the energy-dependent form of the embedding potential 
derived previously (Fisher 1988 and references therein), by transforming from the 
integration over (anti-)periodic paths in imaginary time to integration over the Fourier 
transforms of the paths, defined so that: 

G,,(T - z’> = I: Gpq(iw,) exp[-io,(r - z’>l (29) 
n 

with w, = 2nx/P (bosons) or w, = (2n + 1)n/P (fermions). Then (27) becomes: 

where the functional I of the Fourier-transformed fields is defined to be equal to the 



3890 A J Fisher 

imaginary time integral of Hll along the path. Since Hll is supposed to contain terms 
higher than quadratic in the fields, the structure of I will be more complicated than a 
single summation over frequencies con. 

The convolution in (24) and (27) has now been replaced by an energy-dependent 
potential just as in the independent-particle case. Note that we can add arbitrary source 
terms for fields within region 1 to Hll without affecting the result: 

where J is a complex (Grassmann) source for bosons (fermions). This gives us a gen- 
erating functional that can be differentiated with respect to the sources J to yield 
the expectation values of t-ordered products of the region 1 fields. Therefore Green 
functions of all orders within region 1 are correctly generated by this embedding pro- 
cedure. Double-time Green functions may be obtained by analytic continuation to real 
time in the usual way. Similarly the expectation value of any operator which acts entirely 
within region 1 may be calculated. 

Finally, note that since the embedding corrections in (22) ,  (27) and (30) are inde- 
pendent of H,,  they can be found by solving the complete problem for any region 1 that 
is convenient. This will generally mean adopting in region 1 the same independent 
quasiparticle approximation that is to be used in region 2 and diagonalizing the Ham- 
iltonian of highest symmetry that can be formed by varying HI1, i.e., performing a band- 
structure calculation for the perfect solid. Therefore the problem of region 2 in the 
absence of region 1 (the ‘crystal with a hole in it’), need never be solved to obtain the 
embedding corrections. This is most important for the practical implementation of the 
embedding scheme; for further details of this point and of the methods that can be used 
in the independent quasiparticle approximation see Fisher (1988). 

5. The embedding potential and the influence functional 

Feynman and co-workers (Feynman and Vernon 1963, Feynman and Hibbs 1965), have 
developed a general formalism within the path-integral framework for problems where 
one is interested in the behaviour of a quantum system (analogous to our region 11, 
coupled to a second quantum system (analogous to our region 2). Suppose the system 
of interest (system l ) ,  is described by coordinate or coordinates Q and the remaining 
part (system 2), by coordinate or coordinatesx. We decompose the action as afunctional 
of the path in the form 

Then the probability that system 1 is in state Vf and system 2 in state xf at final time tf 
given that they were in states vi and xi, respectively, at initial time ti is given by the path- 
integral expression: 

x ~7 (Q[ >q;(Qi)xT (X/)xi(Xi) dXi dX[ dQi dQi  dXf  dX; 

x d Q f  dQ;  DX(t)DX’(t) DQ’(t)DQ(t) 
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= 1.f (Qf)Wf(Qf exp[i(S, (Q) - SI (Q’)>lFfi(Q, Q’>W,T (Qi’ >Wi(Qi) 

X dQi dei’ dQf dQ; DQ’(t> DQ(t> (33) 
where the path-integral runs over all paths starting at { e i ,  Q[ , Xi,  X:} and finishing at 
{Qf, Q r ,  X f ,  X;>, and 

Ffi(Q, Q’) = 1%; (Xf)Xf(X; exp[i(Sz(X) + S I ~ ( Q ,  X )  - 5’2(X’> - S I ~ ( Q ’ ,  X’))l 

X xT (X/)xi(Xj) DX(t) DX’(t) dX,  dX[ dXf  dX; 

= exP(iQ,fi(Q, e ’ > >  (34) 
Ffi is the influence functional, containing all the information about the influence of system 
2onsystem 1. It dependsonS2andS12, i.e., bothon thepropertiesoftheisolatedsystem 
2 and on the coupling between the two systems, but not on the properties of system 1. 
The above expression also defines Qfi, the influencephase. If the final state of system 2 
is of no interest, the total probability of a transition from Vi to Wf may be obtained by 
summing over final states Xf and taking some appropriate average over initial states xi. 
For example, Feynman and Vernon (1963) consider some problems at zero temperature 
and take as the initial state xi the ground state of the isolated system 2. If the Lagrangians 
for system 2 and for the coupling between the systems are quadratic in the coordinates 
and their time derivatives then the integrals in (34) are Gaussian integrals and can be 
performed to yield an influence phase Q, which is itself quadratic in the coordinates Q, 
Q’. 

We make contact with the embedding potential description as follows. Suppose 
that instead of the probability Pfi for the above transition we calculate the quantum- 
mechanical amplitude: 

A fi = 1 W T ( Q f)xT (Xf) exp(iS(Q , x>> Vi (Qi)Xi (Xi DQ<t> DX(t> d Qi d Xi dQf d Xf 

= j V ?  (Qf) exp[i(S,(Q) + Rfi<Q>)lVi(Qi) DQ<t> dQi dQf (35) 

where 

exP(iRfi (Q)) = j~r* (Xf) ex~[i(S2 (XI + S 12 (Q 9 x > > l ~ i  (Xi Dx(t> d Xi dXf* 

The influence phase defined in (33) is related to this quantity R by 

Q,fi(Q, Q’) = Rfi(Q) - R,T (Q’). (36) 
Now we shall relate R to the embedding potential: we impose the condition that the 
initial and final states of system 2 be the same, sum over initial states and use a closure 
relation to obtain 

exp[iR(Q)l = j exp[(i(&(X) + SI,(Q, x>>lDx(t> (37) 

where the integral now runs over the set of all paths which return at time tf to their 
starting points. 

This is the first-quantised equivalent of (18); when substituted into (35), it tells us 
the total amplitude for the transition between Vi and Wf while leaving system 2 in the 
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same unspecified state. Furthermore, if system 2 is harmonic so that (37) is a Gaussian 
integral, R(Q) becomes a bilinear functional form in the coordinates Q: 

R(Q) = f f  d t d t ’  X ( t  - t’)Q(t)Q(t’). 
11 

This is in the same form as the last term in (18) and the quantity Z is just the first- 
quantised version of the time-dependent embedding potential. 

Of course a second-quantised influence functional could be defined equally well for 
the many-body problems treated in previous sections by replacing the word coordinate 
byfiefd configuration and by using Grassmann variables for fermion fields. As usual, the 
simplifications of a harmonic system then correspond to those for non-interacting bosons 
or fermions. 

Relating the influence functional to the embedding potential in this way establishes 
the connection between influence functional theory and scattering theory. Apart from 
this, the influence functional and the embedding potential approaches each have their 
own advantages. In favour of the embedding potential method is the fact that once we 
have used the path-integral approach to prove, in some sense, the equivalence of a 
system 1 plus a harmonic system 2 to the same system 1 plus a time-dependent embedding 
potential, we can apply this equivalence in any way we choose and our calculation need 
not involve path integrals at all. This is illustrated by the use of elementary matrix 
methods for independent electron problems (Fisher 1988). The original influence func- 
tional, however, is by contrast of use only within a path-integral framework. On the 
other hand, whereas the embedding potential method, motivated by the appearance of 
a trace in the expression for the partition function, simply takes a trace over system 2, 
there is much more flexibility available in the averaging process if an influence functional 
is used. In particular, the system considered need not be in thermal equilibrium and 
quantities at finite temperature can be obtained directly in real time without the need for 
analytic continuation. These differences can all be traced to the fact that the embedding 
potential approach concentrates on the amplitude for a quantum-mechanical process 
and the influence functional approach on the probability. 

6. The scaling behaviour of the asymmetric Anderson model 

The simplest model Hamiltonian describing a fermion problem which contains many- 
body terms is the Anderson model of an impurity atom, with an on-site Coulomb 
repulsion U ,  hybridising with a band of non-interacting electrons: 

H = 23 [E, ,  d i d + (U/2)  d d d To d + V k  (d c k o  + cia d + c k + ~ k ~ .  
U ko ko  

(39) 
This model has been intensively studied. An exact solution of great complexity is now 
known, based on the Bethe ansatz (Bethe 1931, Weigmann and Tsvelick 1983), but 
understanding of the model’s behaviour is based on its scaling properties under changes 
in the band width (Haldane 1978, Krishna-murthy et af l975,1980a,b). Here we attempt 
the modest target of deriving these scaling properties in the ‘asymmetric’ case U % ed as 
an example of the use of the embedding potential in a true many-body problem. The 
resulting physical picture of the scaling in terms of the suppression of fluctuations in the 
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occupancy of one impurity spin state due to the occupation of the other is closely related 
to the more usual description as given by Haldane (1978); in fact it bears almost the same 
relation to it as did the original scaling theory of the related Kondo problem (Anderson 
et a1 1970) to the later ‘poor man’s’ version (Anderson 1970). 

We take region 1 to be the impurity atom and region 2 to be the host band. The 
embedding potential is given by equation (19) of Fisher (1988): 

and its derivative with respect to the half-band width W ,  assuming a symmetric band, by 

aw 
Here p is the density of states and we allow the energy E to be complex. It is usual to 
take p ( ~ )  1 V,J * as approximately constant over the band: 

P ( E k )  I Vk I = A h  for - W < & k  < W (42) 
where A is the Lorenzian broadening of a single-particle state hybridizing with the band. 
On the imaginary energy axis, regardless of the detailed form of the band structure, 
dZ/a W is peaked near E = +iW and is of order A/(nW) at these points. 

Consider the partition function as a path integral of the type (27) or (30) over histories 
of the occupancies of the impurity spin states in imaginary time. Each history consists of 
a succession of fluctuations in the occupancy of the two spin states of the impurity and 
while both states are occupied the large on-site Coulomb energy penalty Uis incurred. 
If U is very large and one spin state is occupied, the other state cannot be occupied for 
‘times’ longer than about 1/U without incurring a prohibitive energy penalty. Hence 
fluctuations in the occupancy of the other state with (imaginary) frequencies less than U 
are damped out, and if U %  W then an increment (aZ:/aW) d W  in the embedding 
potential due to a change dW in the band width can have no effect, since it is peaked at 
(imaginary) frequency W. If, however, the first spin state is unoccupied then there is no 
such damping of low (imaginary) frequency occupancy fluctuations and the embedding 
potential increment makes a contribution of order A d W / ( n W )  to the effective energy 
of the state. 

Since the presence or absence of this term in the energy depends only on whether 
the first spin state is occupied or not, the effect of the extra term in the embedding 
potential is the same as a change in the effective one-electron energy of the impurity 
state: 

in agreement with the result of Haldane (1978). (The minus sign appears because the 
embedding potential contributes to the energy when the other spin state is unoccupied.) 
Clearly this scaling behaviour breaks down when either W U (in which case fluc- 
tuations at imaginary frequencies near the peaks of the embedding potential increment 
are no longer suppressed), or when p S 1/W (in which case the path integral is taken 
over such a small ‘time’ interval that fluctuations of characteristic frequency as low as W 
cannot occur, regardless of the occupancy of the other state). Scaling also breaks down 
when &Zff is driven outside the band interval [ - W, Wl or when W becomes of the same 
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order as A (whichever occurs first as Wis decreased), since then alloccupancy fluctuations 
are damped out, in the first case by the energy cost to remove a particle or hole from the 
band and in the second by the large size of the embedding potential. 

We see that the simple physical picture of suppression of double occupancy fluc- 
tuations below a certain frequency, coupled with elementary considerations concerning 
the form of the embedding potential, have enabled us to derive the scaling behaviour of 
the many-body problem. 

7. Conclusion 

We have shown that the problem of one part of a quantum-mechanical system where 
boson or fermion quasiparticles are allowed to interact (region 1) which is embedded in 
a second part where they do not interact (region 2) is equivalent to the problem of the 
isolated region 1 with an extra term added to the Hamiltonian. In the case considered 
here, where the coupling between regions 1 and 2 simply takes the form of particle 
hopping between them, the extra term is a contribution to the one-body part of the 
Hamiltonian. For a system such as a fermion sea (region 1) coupled to bosons (region 
2), where the fermions can emit or absorb bosons and therefore the coupling between 
the two regions contains both region 1 annihilation and creation operators, we would 
obtain instead the familiar boson-mediated interaction between the fermions. 

The result holds only if a trace is taken over the possible configurations of the fields 
in region 2 that might accompany a given evolution of the fields in region 1. In particular, 
it holds if a trace is taken over all the fields to find the partition function and hence the 
free energy of the system. The additional term in the Hamiltonian is both advanced and 
retarded in real or imaginary time, or alternatively is frequency (energy) dependent. 

We stress that the method involves no prescription as to how the many-body problem 
within region 1 is to be tackled. Indeed, since the transformation between the complete 
system and region 1 alone plus the embedding potential is exact, its strength lies in the 
fact that it can be combined with any treatment of the many-body terms. 

As we suggested in the Introduction, this result has wide applications in the theory 
of solids. For example a calculation can be performed on a cluster of atoms around some 
defect where many-electron interactions are important locally and the bulk solid can be 
represented (assuming the independent-electron approximation is sufficient in the bulk), 
by the embedding potential. Since the free energy is given correctly to within an additive 
constant, this method will yield the correct interatomic forces and the correct atomic 
equilibrium positions provided that atomic displacements generate a negligible change 
in the Hamiltonian outside region 1. An example of a defect system in which such an 
approach might be especially useful is provided by the diamond vacancy. 

Applications are not confined to cases where region 1 is spatially localized. For 
example, consider the periodic Anderson model (PAM), where an array of rare earth ions 
like the impurity studied in 0 6 and with very large on-site electron-electron repulsion U 
hybridises with a wide conduction band treated in the independent-electron approxi- 
mation. By taking the rare earth ions as region 1 and the conduction band as region 2 
we can reduce the problem within the rare earth lattice to a Hubbard model with complex 
and energy- (frequency-)dependent hopping parameters. It has recently been discovered 
(Harrington et a1 1988), that the solution of the PAM reduces to that of the Hubbard 
model if the direct f-f hopping is sufficiently large. This may be interpreted from the 
present point of view to mean that in this limit the energy dependence of the conduction 



Embedding potential for an interacting system 3895 

band mediated hopping is swamped by the direct hopping and simple Hubbard model 
behaviour is recovered. 
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